

12. Sınıf Matematik Ders Kitabı Cevapları Melis Yayınları Sayfa 280

“12. Sınıf Matematik Ders Kitabı Cevapları Sayfa 280 Melis Yayınları” ulaşabilmek ve dersinizi kolayca yapabilmek için aşağıdaki yayınımızı mutlaka inceleyiniz.
12. Sınıf Matematik Ders Kitabı Cevapları Melis Yayınları Sayfa 280
Matematiksel problemler fonksiyonlarla modellenerek daha sistematik ve daha kolay bir şekilde çözülebilir. Bu problemlerde en fazla veya en az kavramları yer aldığında çözüme ulaşmak için modellediğimiz fonksiyonun ekstremum (maksimum ve minimum) noktalarını bulmamız gerekir. Bir fonksiyonun ekstremum noktaları belirlendiğinde fonksiyon hakkında önemli bir bilgi elde edilir. Bu bilgi, fonksiyonun grafiğinin çiziminde oldukça değerlidir. Bu bölümde türev yardımıyla bir fonksiyonun ekstremum noktalarını belirlemeyi öğreneceğiz.
A £ R ve f: A – R bir fonksiyon olsun.
Her x e A için f(x) < f(x0) olacak biçimde bir x0 e A varsa f fonksiyonunun x = x0’da mutlak maksimumu vardır. Bu durumda f(x0) değerine f fonksiyonunun mutlak maksimum değeri ve (x0, f(x0)) noktasına f fonksiyonunun mutlak maksimum noktası denir.
Her xe A için f(x0)<f(x) olacak biçimde bir x0eA varsa f fonksiyonunun x = x0’da mutlak minimumu vardır. Bu durumda f(x0) değerine f fonksiyonunun mutlak minimum değeri ve (x0, f(x0)) noktasına f fonksiyonunun mutlak minimum noktası denir, f fonksiyonunun mutlak maksimum ve mutlak minimum noktalarına mutlak ekstremum noktaları denir.
Yanda grafiği verilen f :[a,b] — R fonksiyonunun mutlak maksimum noktası A(a,f(a)) ve mutlak minimum noktası B(x0,f(x0))’dır.
- Cevap: Bu sayfada soru bulunmamaktadır.
12. Sınıf Melis Yayınları Matematik Ders Kitabı Sayfa 280 ile ilgili aşağıda bulunan emojileri kullanarak duygularınızı belirtebilir aynı zamanda sosyal medyada paylaşarak bizlere katkıda bulunabilirsiniz.
Yeni Yorum